

DESSH Symposium Gabel Lab Research Update

Harrison Gabel, PhD Alyssa Erickson

0 20 22

9-30-23

Gabel lab at Washington University in St. Louis

- Lab established in 2015 to study gene regulation in brain development and function
- Studying the basic molecular functions of multiple genes in the brain
- Applying what we learn to understanding neurodevelopmental disorders

Alyssa Erickson Carrying out DESSH research

Neurons in the brain require precise gene regulation to carry out their functions

Neurons in the brain require precise gene regulation to carry out their functions

Neurons in the brain require precise gene regulation to carry out their functions

Neurodevelopmental disorders commonly arise from to disruption of **genes that regulate other genes**

	ASD predominant (ASD _p) 53 genes			ASD & NDD (ASD _{NDD}) 49 genes		
Gene expression regulation 58 genes	ASH1L CELF4 CHD8 DEAF1 EIF3G ELAVL3 HDLBP KDM5B KDM6B	KMT2C KMT2E KMT5B LDB1 MKX NCOA1 PAX5 PHF2 PHF21A	RFX3 RORB SATB1 SKI SMARCC2 TBR1 ZMYND8	ADNP ANKRD11 ARID1B ASXL3 BCL11A CHD2 CREBBP CTNNB1	IRF2BPL MBD5 MED13L MYT1L NACC1 NSD1 NR3C2 PHF12	SETD5 SIN3A TBL1XR1 TCF4 TCF7L2 TCF20 TLK2 TRAF7
Neuronal communication 24 genes	ANK2 AP2S1 CACNA2D3 DIP2A	GRIA2 KONMA1 NRXN1 PTEN	SCN1A SHANK2 SHANK3	DNMT3A FOXP1 FOXP2	POGZ PPP2R5D RAI1	TRIP12 VEZE1 WAC
Cytoskeleton 9 genes	CORO1A DPYSL2	GFAP MAP1A	PTK7 SPAST	CACNA1E GABRB2 GABRB3 GRIN2B	KCNQ3 LRRO4C PRR12 SCN2A	SLC6A1 STXBP1 SYNGAP1
Other 11 genes	GIGYF1 KIAA0232 NUP155	PPP5C SRPRA TEK	TM9SF4 TRIM23 UBR1	DYNC1H1 GNAI1	DYRK1A HECTD4	TAOK1

Evidence for ASD association: FWER <0.05 FDR <0.05 FDR <0.10

Histone modifications help regulate genes

Genes are wrapped around histones

WAC facilitates the histone modification H2B monoubiquitin (H2Bub)

Cell lines

Neurons in the brain?

H2B monoubiquitin (H2Bub) is a modification that affects gene expression

Important to determine if/how WAC affects H2Bub and gene regulation in neurons in the brain

Goal: study the effects of a **complete WAC knockout** on:

- H2Bub

- Neuronal gene transcription

Why complete knockout?

- Allows us to determine core functions of WAC
- Effects are larger, discoveries in a complete knockout tell us where to look in heterozygous knockout

How to make a complete knockout of WAC?

In mice, if both copies of Wac are deleted, the mouse will not live to birth

We use a **conditional knockout mouse**

How to make a complete knockout of WAC?

In mice, if both copies of Wac are deleted, the mouse will not live to birth

We use a **conditional knockout mouse**

Cultured neurons allow for manipulation

Can easily treat with Cre recombinase to delete WAC

Now we can ask: does WAC affect H2Bub in neurons?

Gene pathways related to synaptic function are dysregulated

~400 genes are dysregulated in Wac KO

What does this mean for neuron function?

There is an enrichment for dysregulated genes to be involved in synaptic function

Neurons send and receive signals at their synapses, and this requires complex and precise regulation

https://qbi.uq.edu.au

How is loss of WAC affecting synaptic function?

H2Bub is important for rapid gene expression in other systems

Is it necessary for neurons to respond to synaptic activity?

Is WAC necessary for activity-dependent transcription?

KCl can be used to induce neurons to depolarize so that neuronal activity can be studied

WAC knockout causes over-induction of several activity genes

Future direction: is activity-dependent transcription disrupted *in vivo* in a DESSH model?

DESSH mouse model: heterozygous WAC knockout

Example: use motor activity to study induced expression

Future direction: is activity-dependent transcription disrupted in neurons with DESSH variants?

Skin cells from individuals with DESSH can be reprogrammed to neurons

Can use these neurons to test whether H2Bub, gene regulation, and activitydependent transcription are affected by specific DESSH variants

Conclusions from our initial studies of WAC in neurons

- We have established a system where we can study complete neuronal knockout of WAC, helping us to define its function
- WAC regulates global H2Bub levels and affects gene expression in neurons
- WAC is necessary for proper activity regulated gene expression, particularly silencing following activation

Future directions: is activity-dependent transcription disrupted *in vivo* in the bain of the DESSH mouse model or cultured neurons with DESSH variants?

Acknowledgements

Gabel Lab

Alyssa Erickson Nicole Hamagami Kim Boua Diana Beard Mati Nemera Ladan Abbasi Rinaldo D'Souza Yasmin Razia Shawn Covarrubias

WashU DBBS

Dept. of Neuroscience

Dr. Marwan Shinawi Dr. Amanda Smith